
Goal
My goal is to prove rigorously the Shannon decoding theorem.

Let 𝑃𝑋𝑌 be the law of some channel from alphabet 𝒳 to 𝒴 (we suppose that the two alphabet are
the same size for convenience, but the proof is the same otherwise)

The capacity of the channel is defined as 𝐶 = max𝑃𝑥
𝐼(𝑋; 𝑌)

Theorem: if 𝑅 < 𝐶 , for any error rate 𝛿, there exist 𝑛, and a encoder-decoder pair between
{0, 1}⌊𝑅𝑛⌋ and 𝒴𝑛 such that the probability of error is smaller than 𝛿.

The first step to prove this theorem is to prove it is true when we allow the encoders to be generated
randomly. We will justify afterwards why it proves the theorem for the non-random case.

Code
In the following code, sample is a function that takes an array d as argument, and returns i such that
𝑃(sample(𝑑) = 𝑖) = 𝑑[𝑖]. It draws from the distribution.

l = ... # size of canal alphabet
P_y_x = ... # list of lxl elements
P_x = ... # list of l elements summing to one

P_y = l*[None]
for sy in range(l):
 P_y[sy] = sum(P_y_x[sy][sx] for sx in range(l))

def entropy(distrib):
 return sum(p*log2(1/p) for p in distrib)

compute H(Y|X) when X~d and y|x ~ dc
def conditional_entropy(d, dc):
 return sum(d[j] * entropy(dc[j]) for j in range(len(d)))

def X():
 return sample(P_x)

def Y(x):
 return sample(P_y_x[x])

def generate_encode_table(k, n):
 table = 2**k * (n * [None])
 for w in range(2**k):
 for j in range(n):
 table[w][j] = X()
 return table

def jointly_typical(n, x, y, epsilon):
 hx = entropy(P_x)
 hy = entropy(P_y)
 hxy = hx + conditional_entropy(P_y_x)

 log_px = sum(log2(P_x[x[j]]) for j in range(n))
 log_py = sum(log2(P_y[y[j]]) for j in range(n))
 log_pxy = sum(log2(P_x[x[j]] * P_y_x[x[j]][y[j]]) for j in range(n))

 return abs(hx - log_px/n) + abs(hy - log_py/n) + abs(hxy - log_pxy/n) < epsilon

def decode(k, n, table, y):
 for w in range(2**k):
 if (jointly_typical(n, table[w], y)):
 return w
 raise ValueError

def random_input(k):
 return [sample([1/2, 1/2]) for _ in range(n)]

def error(n, R, epsilon):
 k = int(n*R)
 table = generate_encode_table(k, n)
 input = random_input()
 x = table[x]
 y = [Y(s) for s in x]

 # will be useful in the proof
 hint = jointly_typical(n, x, y, epsilon)

 decoded = decode(k, n, table, y)
 return (input != decoded)

Make sure you understand what the code is doing before proceeding.

In the global variables,
• p_y_x is fixed because it is the property of the canal
• l is also a property of the canal
• p_x can be arbitrary. We chose the one that maximizes 𝐼(𝑋; 𝑌)

Analysis
We fix 𝑅 and 𝜀 such that 𝑅 + 𝜀 < 𝐶

Let 𝑃𝑛 be the probability that error(n, R, epsilon) returns True.

My goal is to show that lim𝑛→∞ 𝑃𝑛 = 0; i.e the probability of getting a decoding error tends to zero.

We decompose the error into two kinds: 𝑃𝑛 = 𝑃(error ∩ hint) + 𝑃(error ∩ hint)

The hint variable was not useful in the decoding scheme, it was introduced to better understand the
proof. It represents whether the encoded sequence x and the transmitted sequence y were detected
as jointly typical. Let’s explore what jointly typical means.

Joint Typicality
Let’s start by explaining what typicality means.

Let’s say you know the law 𝑄 of some variable 𝑆.

The outcomes of 𝑆 may be more or less likely, more or less surprising.

The surprisal of 𝑠 is defined as − log2(𝑄(𝑠)), and the entropy as the average surprise: 𝐻(𝑄) =
𝔼[− log2(𝑄(𝑆))]

Now, let’s observe a sequence 𝑆 of IID variables with the law 𝑄

The surprise of 𝑠 is calculated as ∑𝑛
𝑖=0 − log2(𝑄(𝑠𝑖))

And in average, we expect the surprise to be 𝑛 times the entropy. 𝑠 is typical when its surprise is
close to the average, i.e when

| − 1
𝑛 ∑𝑛

𝑗=1 log 𝑃𝑋(𝑥𝑗) − 𝐻(𝑋)| < 𝜀

(of course, the notion of “typical” depends on a parameter 𝜀)

And this concept is very useful. Let 𝐴𝜀,𝑛 be the set of all typical sequences of length 𝑛.

By the law of large numbers, the probability that 𝑠 is typical goes to 1 as 𝑛 goes to ∞: 𝑃(𝐴𝜀,𝑛) ≈ 1

In addition, since for every element of 𝐴𝜀,𝑛, it’s probability is close to 2−𝑛𝐻(𝑄), we can deduce the
approximate number of elements in the set:

#𝐴𝜀,𝑛 ≈ 2𝑛𝐻(𝑄)

That proves that most of the time, you need ⌈𝑛𝐻(𝑄)⌉ bits to encode a 𝑠

Now, let’s talk about joint typicality.

We need a distribution 𝑃𝑋 and a distribution 𝑃𝑌 |𝑋 . From those we can deduce 𝑃𝑌

Let 𝑥, 𝑦 be 2 sequences of symbols. They are jointly typical when:

• |−1
𝑛 ∑𝑛

𝑗=1 log 𝑃𝑋(𝑥𝑗) − 𝐻(𝑋)| < 𝜀0

• |−1
𝑛 ∑𝑛

𝑗=1 log 𝑃𝑌 (𝑦𝑗) − 𝐻(𝑌)| < 𝜀1

• |−1
𝑛 ∑𝑛

𝑗=1 log 𝑃𝑋𝑌 (𝑥𝑗, 𝑦𝑗) − 𝐻(𝑋, 𝑌)| < 𝜀2

With 𝜀0 + 𝜀1 + 𝜀2 < 𝜀

Since we have 2 variables, we have to be vey careful about the dependency between them. We have
different properties when:
• 𝑋𝑖 and 𝑌𝑖 follow 𝑃𝑋𝑌 (1)
• 𝑋𝑖 follows 𝑃𝑋 and 𝑌𝑖 follows 𝑃𝑌 but they are independent. (2)

And that’s exactly why joint typicality is useful for decoding. If we find 𝑥 such that (𝑥, 𝑦) are
jointly typical, that gives a hint that 𝑥 may be the encoded symbol we want to find.

More precisely:

• if the sequence of couples (𝑋𝑖, 𝑌𝑖) is IID and follows 𝑃𝑋𝑌 , then the probability that (𝑋, 𝑌) is in
the typical set goes to 0 as 𝑛 goes to ∞.

• if in the contrary 𝑋𝑖 is IID and follows 𝑃𝑋 , 𝑌𝑖 is IID and follows 𝑃𝑦 but 𝑋𝑖 and 𝑌𝑖 are
independent for every 𝑖, then the probability that 𝑋 and 𝑌 are jointly typical is
∑𝑥 ∑𝑦 ∏ 𝑃𝑋(𝑥𝑖) ∏ 𝑃𝑌 (𝑦𝑖)𝟙𝑥 and 𝑦 jointly typical ≤
∑𝑥 ∑𝑦

∏ 𝑃𝑋(𝑥𝑖) ∏ 𝑃𝑌 (𝑦𝑖)
∏ 𝑃𝑋𝑌 (𝑥𝑖,𝑦𝑖)

∏ 𝑃𝑋𝑌 (𝑥𝑖, 𝑦𝑖)𝟙𝑥 and 𝑦 jointly typical ≤
∑𝑥 ∑𝑦 2−𝑛𝐻(𝑋)−𝑛𝐻(𝑦)−𝑛𝐻(𝑋,𝑌)+𝑛(𝜀1+𝜀2+𝜀3) ∏ 𝑃𝑋𝑌 (𝑥𝑖, 𝑦𝑖) ≤ 2−𝑛𝐼(𝑋;𝑌)+𝑛𝜀

The calculations are a bit cumbersome, but the conclusion is very important: knowing if 𝑋 and (𝑌
are jointly typical is a very good test to know if they are drawn according to 𝑃𝑋𝑌 or if they are
independent.

End of the proof
𝑃𝑛 = 𝑃(error ∩ hint)⏟⏟⏟⏟⏟⏟⏟

collision

+ 𝑃(error ∩ hint)⏟⏟⏟⏟⏟⏟⏟
non typicality

Let’s start with “non typicality”:

𝑃(error ∩ hint) ≤ 𝑃(hint)

If you look at the code, it is the probability that x and y are not jointly typical, with y drawn from x
following p_(Y|X). We saw that this probbility goes to zero (1).

Now, collision:

𝑃(error ∩ hint) is the probability that decode returns the wrong w. It happends when there exists a
w != input such that jointly_typical(n, table[w], y) returns true.

We can decompose this probability depending on the value returned by decode:

𝑃(hint ∩ error) = ∑
𝑤≠ input

𝑃(hint ∩ decode(𝑘, 𝑛, table, 𝑦) = 𝑤)

≤ ∑
𝑤≠ input

𝑃(jointly_typical(𝑛, table[𝑤], 𝑦))

And what is the relation between table[w] and y ? Since w != input, x and table[w] are independent,
so y and table[w] are independent ! OMG !!!

That means we can use (2): 𝑃(jointly_typical(𝑛, table[𝑤], 𝑦) ≤ 2−𝑛𝐼(𝑋;𝑌)+𝑛𝜀

𝑃(hint ∩ error) ≤ ∑𝑤≠ input 2−𝑛𝐼(𝑋;𝑌)+𝑛𝜀 ≤ 2𝑘2−𝑛𝐼(𝑋;𝑌)+𝑛𝜀

as a reminder:
• we chose 𝑃𝑋 such that 𝐼(𝑋; 𝑌) = 𝐶
• 𝑘 = ⌊𝑛𝑅⌋ so 𝑘 ≤ 𝑛𝑅

𝑃(hint ∩ error) ≤ 2𝑛(𝑅+𝜀−𝐶) so it decays exponentially.

—

We can now conclude: 𝑃𝑛 → 0

Non random case:
We know that for an average encoding table, the probability of error can be made inferior to 𝛿

That means that there exists at least one encoding table with error probability inferior to 𝛿,
otherwise the average probability would be superior.

The proof is done □

	Goal
	Code
	Analysis
	Joint Typicality
	End of the proof
	Non random case:

